C 43199	(Pages : 2)	Name
		Reg No

SECOND SEMESTER (CBCSS—UG) DEGREE EXAMINATION APRIL 2023

Physics/Applied Physics

PHY 2B 02/APH 2B 02-MECHANICS

(2019 Admissions)

Time: Two Hours

Maximum: 60 Marks

The symbols used in this question paper have their usual meanings.

Section A (Short Answer Type)

Answer all questions in two or three sentences. Each correct answer carries a maximum of 2 marks.

- 1. Explain what is meant by the Galilean transformations.
- 2. Write the equation of a forced damped harmonic oscillator and describe the terms involved.
- 3. Define central force motion.
- 4. List any two features of central force motion.
- 5. Briefly explain about the two types of wave motion.
- 6. What is a Pulse?
- 7. Show that the motion of a particle under central force is always confined to a single plane.
- 8. Define non-inertial frame of references with examples.
- 9. Explain the terms: (a) apogee; and (b) perigee.
- 10. Write the equation of a forced damped harmonic oscillator and describe the terms involved.
- 11. Write down the general expression for a plane progressive wave and explain the terms.
- 12. What are stationary satellites?

(Ceiling - 20)

Turn over

2 C 43199

Section B (Paragraph / Problem Type)

Answer all questions in a paragraph of about half a page to one page.

Each correct answer carries a maximum of 5 marks.

- 13. Write note on index of refraction and dispersion.
- 14. Calculate the energy needed to put the satellite into orbit by neglecting losses due to friction.
- 15. Calculate the height at which a stationary satellite must revolve in its orbit around the earth.
- 16. Evaluate the time average values of the potential and kinetic energies of a frictionless harmonic oscillator.
- 17. Discuss Newton's model to determine the velocity of sound in air? Account for the correction required to obtain observed result.
- 18. A bead slides without friction on a rigid wire rotating at constant angular speed ω . Find the force exerted by the wire on the bead.
- 19. The centre of mass of a 1600 kg car is midway between the wheels and 0.7 m above the ground. The wheels are 2.6 m apart :
 - (a) What is the minimum acceleration A of the car so that the front wheels just begin to lift off the ground?
 - (b) If the car decelerates at rate *g*, what is the normal force on the front wheels and on the rear wheels?

(Ceiling - 30)

Section C (Essay Type)

Essays.

Answer in about two pages, any one question. Answer carries 10 marks.

- 1. What is a Pulse? Discuss Fourier analysis of a non-periodic function with suitable plots.
- 2. State and prove Kepler's laws of planetary motion. Show that the areal velocity of a planet around the sun is constant.

 $(1 \times 10 = 10 \text{ marks})$